Copied to
clipboard

?

G = C42.161D10order 320 = 26·5

161st non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.161D10, C10.1002- (1+4), C10.1392+ (1+4), (C4×D20)⋊15C2, C4⋊C4.118D10, C422C24D5, C20.6Q89C2, D10⋊Q843C2, D102Q841C2, D10⋊D4.4C2, (C4×C20).33C22, C22⋊C4.79D10, C4.Dic1039C2, Dic54D436C2, D10.20(C4○D4), (C2×C20).194C23, (C2×C10).251C24, C4⋊Dic5.54C22, D10.12D451C2, D10.13D441C2, C2.64(D48D10), C23.57(C22×D5), (C2×D20).235C22, C22.D2029C2, (C22×C10).65C23, C22.272(C23×D5), Dic5.14D445C2, C23.D5.67C22, C59(C22.33C24), (C2×Dic5).275C23, (C4×Dic5).159C22, C10.D4.56C22, (C22×D5).235C23, C2.64(D4.10D10), D10⋊C4.114C22, (C2×Dic10).190C22, (C22×Dic5).151C22, (D5×C4⋊C4)⋊41C2, C2.98(D5×C4○D4), C4⋊C4⋊D542C2, (C5×C422C2)⋊6C2, C10.209(C2×C4○D4), (C2×C4×D5).270C22, (C5×C4⋊C4).203C22, (C2×C4).209(C22×D5), (C2×C5⋊D4).71C22, (C5×C22⋊C4).76C22, SmallGroup(320,1379)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.161D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C42.161D10
C5C2×C10 — C42.161D10

Subgroups: 798 in 218 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C22, C22 [×10], C5, C2×C4 [×6], C2×C4 [×12], D4 [×5], Q8, C23, C23 [×2], D5 [×3], C10 [×3], C10, C42, C42, C22⋊C4 [×3], C22⋊C4 [×7], C4⋊C4 [×3], C4⋊C4 [×11], C22×C4 [×5], C2×D4 [×3], C2×Q8, Dic5 [×6], C20 [×6], D10 [×2], D10 [×5], C2×C10, C2×C10 [×3], C2×C4⋊C4, C4×D4 [×2], C4⋊D4, C22⋊Q8 [×3], C22.D4 [×4], C42.C2 [×2], C422C2, C422C2, Dic10, C4×D5 [×5], D20 [×2], C2×Dic5 [×6], C2×Dic5, C5⋊D4 [×3], C2×C20 [×6], C22×D5 [×2], C22×C10, C22.33C24, C4×Dic5, C10.D4 [×6], C4⋊Dic5 [×5], D10⋊C4 [×6], C23.D5, C4×C20, C5×C22⋊C4 [×3], C5×C4⋊C4 [×3], C2×Dic10, C2×C4×D5 [×4], C2×D20, C22×Dic5, C2×C5⋊D4 [×2], C20.6Q8, C4×D20, Dic5.14D4, Dic54D4, D10.12D4 [×2], D10⋊D4, C22.D20, C4.Dic10, D5×C4⋊C4, D10.13D4, D10⋊Q8, D102Q8, C4⋊C4⋊D5, C5×C422C2, C42.161D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.33C24, C23×D5, D5×C4○D4, D48D10, D4.10D10, C42.161D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 34 70 159)(2 25 71 150)(3 36 72 141)(4 27 73 152)(5 38 74 143)(6 29 75 154)(7 40 76 145)(8 31 77 156)(9 22 78 147)(10 33 79 158)(11 24 80 149)(12 35 61 160)(13 26 62 151)(14 37 63 142)(15 28 64 153)(16 39 65 144)(17 30 66 155)(18 21 67 146)(19 32 68 157)(20 23 69 148)(41 81 107 121)(42 92 108 132)(43 83 109 123)(44 94 110 134)(45 85 111 125)(46 96 112 136)(47 87 113 127)(48 98 114 138)(49 89 115 129)(50 100 116 140)(51 91 117 131)(52 82 118 122)(53 93 119 133)(54 84 120 124)(55 95 101 135)(56 86 102 126)(57 97 103 137)(58 88 104 128)(59 99 105 139)(60 90 106 130)
(1 97 11 87)(2 128 12 138)(3 99 13 89)(4 130 14 140)(5 81 15 91)(6 132 16 122)(7 83 17 93)(8 134 18 124)(9 85 19 95)(10 136 20 126)(21 54 31 44)(22 111 32 101)(23 56 33 46)(24 113 34 103)(25 58 35 48)(26 115 36 105)(27 60 37 50)(28 117 38 107)(29 42 39 52)(30 119 40 109)(41 153 51 143)(43 155 53 145)(45 157 55 147)(47 159 57 149)(49 141 59 151)(61 98 71 88)(62 129 72 139)(63 100 73 90)(64 131 74 121)(65 82 75 92)(66 133 76 123)(67 84 77 94)(68 135 78 125)(69 86 79 96)(70 137 80 127)(102 158 112 148)(104 160 114 150)(106 142 116 152)(108 144 118 154)(110 146 120 156)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 96 11 86)(2 85 12 95)(3 94 13 84)(4 83 14 93)(5 92 15 82)(6 81 16 91)(7 90 17 100)(8 99 18 89)(9 88 19 98)(10 97 20 87)(21 105 31 115)(22 114 32 104)(23 103 33 113)(24 112 34 102)(25 101 35 111)(26 110 36 120)(27 119 37 109)(28 108 38 118)(29 117 39 107)(30 106 40 116)(41 154 51 144)(42 143 52 153)(43 152 53 142)(44 141 54 151)(45 150 55 160)(46 159 56 149)(47 148 57 158)(48 157 58 147)(49 146 59 156)(50 155 60 145)(61 135 71 125)(62 124 72 134)(63 133 73 123)(64 122 74 132)(65 131 75 121)(66 140 76 130)(67 129 77 139)(68 138 78 128)(69 127 79 137)(70 136 80 126)

G:=sub<Sym(160)| (1,34,70,159)(2,25,71,150)(3,36,72,141)(4,27,73,152)(5,38,74,143)(6,29,75,154)(7,40,76,145)(8,31,77,156)(9,22,78,147)(10,33,79,158)(11,24,80,149)(12,35,61,160)(13,26,62,151)(14,37,63,142)(15,28,64,153)(16,39,65,144)(17,30,66,155)(18,21,67,146)(19,32,68,157)(20,23,69,148)(41,81,107,121)(42,92,108,132)(43,83,109,123)(44,94,110,134)(45,85,111,125)(46,96,112,136)(47,87,113,127)(48,98,114,138)(49,89,115,129)(50,100,116,140)(51,91,117,131)(52,82,118,122)(53,93,119,133)(54,84,120,124)(55,95,101,135)(56,86,102,126)(57,97,103,137)(58,88,104,128)(59,99,105,139)(60,90,106,130), (1,97,11,87)(2,128,12,138)(3,99,13,89)(4,130,14,140)(5,81,15,91)(6,132,16,122)(7,83,17,93)(8,134,18,124)(9,85,19,95)(10,136,20,126)(21,54,31,44)(22,111,32,101)(23,56,33,46)(24,113,34,103)(25,58,35,48)(26,115,36,105)(27,60,37,50)(28,117,38,107)(29,42,39,52)(30,119,40,109)(41,153,51,143)(43,155,53,145)(45,157,55,147)(47,159,57,149)(49,141,59,151)(61,98,71,88)(62,129,72,139)(63,100,73,90)(64,131,74,121)(65,82,75,92)(66,133,76,123)(67,84,77,94)(68,135,78,125)(69,86,79,96)(70,137,80,127)(102,158,112,148)(104,160,114,150)(106,142,116,152)(108,144,118,154)(110,146,120,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,96,11,86)(2,85,12,95)(3,94,13,84)(4,83,14,93)(5,92,15,82)(6,81,16,91)(7,90,17,100)(8,99,18,89)(9,88,19,98)(10,97,20,87)(21,105,31,115)(22,114,32,104)(23,103,33,113)(24,112,34,102)(25,101,35,111)(26,110,36,120)(27,119,37,109)(28,108,38,118)(29,117,39,107)(30,106,40,116)(41,154,51,144)(42,143,52,153)(43,152,53,142)(44,141,54,151)(45,150,55,160)(46,159,56,149)(47,148,57,158)(48,157,58,147)(49,146,59,156)(50,155,60,145)(61,135,71,125)(62,124,72,134)(63,133,73,123)(64,122,74,132)(65,131,75,121)(66,140,76,130)(67,129,77,139)(68,138,78,128)(69,127,79,137)(70,136,80,126)>;

G:=Group( (1,34,70,159)(2,25,71,150)(3,36,72,141)(4,27,73,152)(5,38,74,143)(6,29,75,154)(7,40,76,145)(8,31,77,156)(9,22,78,147)(10,33,79,158)(11,24,80,149)(12,35,61,160)(13,26,62,151)(14,37,63,142)(15,28,64,153)(16,39,65,144)(17,30,66,155)(18,21,67,146)(19,32,68,157)(20,23,69,148)(41,81,107,121)(42,92,108,132)(43,83,109,123)(44,94,110,134)(45,85,111,125)(46,96,112,136)(47,87,113,127)(48,98,114,138)(49,89,115,129)(50,100,116,140)(51,91,117,131)(52,82,118,122)(53,93,119,133)(54,84,120,124)(55,95,101,135)(56,86,102,126)(57,97,103,137)(58,88,104,128)(59,99,105,139)(60,90,106,130), (1,97,11,87)(2,128,12,138)(3,99,13,89)(4,130,14,140)(5,81,15,91)(6,132,16,122)(7,83,17,93)(8,134,18,124)(9,85,19,95)(10,136,20,126)(21,54,31,44)(22,111,32,101)(23,56,33,46)(24,113,34,103)(25,58,35,48)(26,115,36,105)(27,60,37,50)(28,117,38,107)(29,42,39,52)(30,119,40,109)(41,153,51,143)(43,155,53,145)(45,157,55,147)(47,159,57,149)(49,141,59,151)(61,98,71,88)(62,129,72,139)(63,100,73,90)(64,131,74,121)(65,82,75,92)(66,133,76,123)(67,84,77,94)(68,135,78,125)(69,86,79,96)(70,137,80,127)(102,158,112,148)(104,160,114,150)(106,142,116,152)(108,144,118,154)(110,146,120,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,96,11,86)(2,85,12,95)(3,94,13,84)(4,83,14,93)(5,92,15,82)(6,81,16,91)(7,90,17,100)(8,99,18,89)(9,88,19,98)(10,97,20,87)(21,105,31,115)(22,114,32,104)(23,103,33,113)(24,112,34,102)(25,101,35,111)(26,110,36,120)(27,119,37,109)(28,108,38,118)(29,117,39,107)(30,106,40,116)(41,154,51,144)(42,143,52,153)(43,152,53,142)(44,141,54,151)(45,150,55,160)(46,159,56,149)(47,148,57,158)(48,157,58,147)(49,146,59,156)(50,155,60,145)(61,135,71,125)(62,124,72,134)(63,133,73,123)(64,122,74,132)(65,131,75,121)(66,140,76,130)(67,129,77,139)(68,138,78,128)(69,127,79,137)(70,136,80,126) );

G=PermutationGroup([(1,34,70,159),(2,25,71,150),(3,36,72,141),(4,27,73,152),(5,38,74,143),(6,29,75,154),(7,40,76,145),(8,31,77,156),(9,22,78,147),(10,33,79,158),(11,24,80,149),(12,35,61,160),(13,26,62,151),(14,37,63,142),(15,28,64,153),(16,39,65,144),(17,30,66,155),(18,21,67,146),(19,32,68,157),(20,23,69,148),(41,81,107,121),(42,92,108,132),(43,83,109,123),(44,94,110,134),(45,85,111,125),(46,96,112,136),(47,87,113,127),(48,98,114,138),(49,89,115,129),(50,100,116,140),(51,91,117,131),(52,82,118,122),(53,93,119,133),(54,84,120,124),(55,95,101,135),(56,86,102,126),(57,97,103,137),(58,88,104,128),(59,99,105,139),(60,90,106,130)], [(1,97,11,87),(2,128,12,138),(3,99,13,89),(4,130,14,140),(5,81,15,91),(6,132,16,122),(7,83,17,93),(8,134,18,124),(9,85,19,95),(10,136,20,126),(21,54,31,44),(22,111,32,101),(23,56,33,46),(24,113,34,103),(25,58,35,48),(26,115,36,105),(27,60,37,50),(28,117,38,107),(29,42,39,52),(30,119,40,109),(41,153,51,143),(43,155,53,145),(45,157,55,147),(47,159,57,149),(49,141,59,151),(61,98,71,88),(62,129,72,139),(63,100,73,90),(64,131,74,121),(65,82,75,92),(66,133,76,123),(67,84,77,94),(68,135,78,125),(69,86,79,96),(70,137,80,127),(102,158,112,148),(104,160,114,150),(106,142,116,152),(108,144,118,154),(110,146,120,156)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,96,11,86),(2,85,12,95),(3,94,13,84),(4,83,14,93),(5,92,15,82),(6,81,16,91),(7,90,17,100),(8,99,18,89),(9,88,19,98),(10,97,20,87),(21,105,31,115),(22,114,32,104),(23,103,33,113),(24,112,34,102),(25,101,35,111),(26,110,36,120),(27,119,37,109),(28,108,38,118),(29,117,39,107),(30,106,40,116),(41,154,51,144),(42,143,52,153),(43,152,53,142),(44,141,54,151),(45,150,55,160),(46,159,56,149),(47,148,57,158),(48,157,58,147),(49,146,59,156),(50,155,60,145),(61,135,71,125),(62,124,72,134),(63,133,73,123),(64,122,74,132),(65,131,75,121),(66,140,76,130),(67,129,77,139),(68,138,78,128),(69,127,79,137),(70,136,80,126)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
0010390
0001039
0010400
0001040
,
100000
8400000
00303200
0091100
00003032
0000911
,
3320000
3080000
0015151313
002633284
00112626
004035158
,
3320000
3080000
0011301526
003530326
003923011
00162611

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,39,0,40,0,0,0,0,39,0,40],[1,8,0,0,0,0,0,40,0,0,0,0,0,0,30,9,0,0,0,0,32,11,0,0,0,0,0,0,30,9,0,0,0,0,32,11],[33,30,0,0,0,0,2,8,0,0,0,0,0,0,15,26,1,40,0,0,15,33,1,35,0,0,13,28,26,15,0,0,13,4,26,8],[33,30,0,0,0,0,2,8,0,0,0,0,0,0,11,35,39,16,0,0,30,30,2,2,0,0,15,3,30,6,0,0,26,26,11,11] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4G4H4I4J···4N5A5B10A···10F10G10H20A···20L20M···20R
order12222222444···4444···45510···10101020···2020···20
size11114101020224···4101020···20222···2884···48···8

50 irreducible representations

dim1111111111111112222244444
type++++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D102+ (1+4)2- (1+4)D5×C4○D4D48D10D4.10D10
kernelC42.161D10C20.6Q8C4×D20Dic5.14D4Dic54D4D10.12D4D10⋊D4C22.D20C4.Dic10D5×C4⋊C4D10.13D4D10⋊Q8D102Q8C4⋊C4⋊D5C5×C422C2C422C2D10C42C22⋊C4C4⋊C4C10C10C2C2C2
# reps1111121111111112426611444

In GAP, Magma, Sage, TeX

C_4^2._{161}D_{10}
% in TeX

G:=Group("C4^2.161D10");
// GroupNames label

G:=SmallGroup(320,1379);
// by ID

G=gap.SmallGroup(320,1379);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽